Closing Wed, Jan 13: 2.2 Closing Fri, Jan 15: 2.3

2.3 Limit Strategies (Continued)

Entry Task: Find the limits 1. $\lim_{h \to 0} \left[\frac{(5+h)^2 - 5}{h} \right]$

$$2.\lim_{x \to 16} \left[\frac{x - 16}{\sqrt{x} - 4} \right]$$

Recall: (Limit Flow Chart) $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]$

- Try plugging in the value.
 If denominator ≠ 0, done!
- 2. If denom = 0 & numerator ≠ 0, the answer is -∞, +∞ or DNE.
 Examine the sign of the output from each side.
- 3. If denom = 0 & numerator = 0, Use algebraic methods discussed in class to simplify and cancel until one of them is not zero.

For the den = 0, num = 0 case, here is a summary of the strategies discussed in lecture (we did an example of each):

Strategy 1: Factor/Cancel

Strategy 2: Simplify Fractions

Strategy 3: Expand/Simplify

Strategy 4: Multiply by Conjugate

Strategy 5: Change Variable

Strategy 6: Compare to other functions (Squeeze Thm)

2.5 Continuity

A function, f(x), is **continuous at x = a** if

 $\lim_{x \to a} f(x) = f(a)$

this implies three things

- 1. f(a) is defined.
- 2. $\lim_{x \to a} f(x)$ exists and is finite
- 3. they are the same!

Casually, we might say a function is continuous at x = a if you can draw the graph across x = a point without picking up your pencil.

Our textbook also defines Continuous from the left

 $\lim_{x \to a^-} f(x) = f(a)$

Continuous from the right $\lim_{x \to a^+} f(x) = f(a)$

The "standard" precalculus functions are **continuous everywhere they are defined**:

polynomials \rightarrow defined everywheresin(x), cos(x) \rightarrow defined everywhere e^x \rightarrow defined everywhereodd roots \rightarrow defined everywheretan⁻¹(x) \rightarrow defined everywhere

Rational Functions \rightarrow denom $\neq 0$ Even Roots \rightarrow under radical ≥ 0 ln(x) $\rightarrow x > 0$ tan(x) \rightarrow not at $x = \pm k\pi/2$ sin⁻¹(x), cos⁻¹(x) \rightarrow -1 $\leq x \leq 1$