Closing Wed, Jan 13: 2.2
 Closing Fri, Jan 15: 2.3

2.3 Limit Strategies (Continued)

Entry Task: Find the limits

1. $\lim _{h \rightarrow 0}\left[\frac{(5+h)^{2}-5}{h}\right]$
2. $\lim _{x \rightarrow 16}\left[\frac{x-16}{\sqrt{x}-4}\right]$

Recall: (Limit Flow Chart)
$\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]$

1. Try plugging in the value. If denominator $=\mathbf{0}$, done!
2. If denom = $\mathbf{0}$ \& numerator $\neq \mathbf{0}$, the answer is $-\infty,+\infty$ or DNE. Examine the sign of the output from each side.
3. If denom $=\mathbf{0} \&$ numerator $=\mathbf{0}$, Use algebraic methods discussed in class to simplify and cancel until one of them is not zero.

For the den = 0, num = 0 case, here is a summary of the strategies discussed in lecture (we did an example of each):

Strategy 1: Factor/Cancel
Strategy 2: Simplify Fractions

Strategy 3: Expand/Simplify

Strategy 4: Multiply by Conjugate
Strategy 5: Change Variable
Strategy 6: Compare to other functions (Squeeze Thm)

2.5 Continuity

Our textbook also defines
Continuous from the left
A function, $f(x)$, is continuous at $\mathbf{x}=\mathbf{a}$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

this implies three things

1. $f(a)$ is defined.
2. $\lim _{x \rightarrow a} f(x)$ exists and is finite
3. they are the same!

Casually, we might say a function is continuous at $\mathrm{x}=\mathrm{a}$ if you can draw the graph across $x=$ a point without picking up your pencil.

The "standard" precalculus functions are continuous everywhere they are defined:
polynomials \rightarrow defined everywhere $\sin (x), \cos (x) \rightarrow$ defined everywhere $\mathrm{e}^{\mathrm{x}} \quad \rightarrow$ defined everywhere odd roots \rightarrow defined everywhere $\tan ^{-1}(\mathrm{x}) \quad \rightarrow$ defined everywhere

Rational Functions \rightarrow denom $\neq 0$
Even Roots $\quad \rightarrow$ under radical ≥ 0
$\ln (x) \quad \rightarrow x>0$
$\tan (x) \quad \rightarrow$ not at $x= \pm k \pi / 2$
$\sin ^{-1}(x), \cos ^{-1}(x) \rightarrow-1 \leq x \leq 1$

